
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Queue (link based)

© 2022 Arthur Hoskey. All
rights reserved.

Goals

• Describe the structure of a queue and its
operations at a logical level

• Demonstrate the effect of queue
operations using a particular
implementation of a queue

• Implement the Queue ADT, using both a
an array-based implementation and a
linked implementation

• Discuss Big O runtimes of operations for
array-based and linked implementations.

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Linked) - Implementation

Queue Linked Implementation

 Keep pointers to the front and rear elements.

 Use a node struct to hold the data and a pointer to
the next element.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

Here is the interface for the Queue ADT:

public interface Queue {
 boolean isEmpty();
 boolean isFull();
 void enqueue(int item) throws Exception;
 int dequeue() throws Exception;

 void makeEmpty();
} The public interface of a

queue should be the same

for both the array-based and

linked implementations

© 2022 Arthur Hoskey. All
rights reserved.

Node

 The linked stack data structure requires that we keep more
information at EACH place inside of it.

 Each item in the queue will be a "Node" (not just the data).

 A node stores the data and a reference to the next node

 It should be defined as an inner class within the
QueueLinked class.

class Node {
 Declare int data
 Declare Node next
}

© 2022 Arthur Hoskey. All
rights reserved.

Data for this node (change

data type as necessary to

store other types of data)

Points to next

node in list

Queue (Linked)

 Link-based private members

class QueueLinked implements Queue {

 Declare Node front

 Declare Node rear

 // Public members go here…

}

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Linked)

q.enqueue(11)

q.enqueue(14)

q.enqueue(32)

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

Assume the

queue has 3

elements on to it

Rear

Queue (Linked)

Where would a new element go?

q.enqueue(77)

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

Rear

Queue (Linked) - Enqueue

You MUST put the new item at the end of the queue.

Enqueue Pseudocode

1. Create a new NodeType item (dynamically allocate).

2. Set the fields on the new NodeType item. This means
setting the data item and the next pointer. The next
pointer should be set to the current top.

3. Set the current last element to point to the new node.

(slightly different if queue is empty)

4. Set the rear to the new element.

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Linked)

1. Create a new Node item (dynamically allocate).

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

Rear

Data:

next:

temp

Queue (Linked)

2. Set the fields on the new Node item. This means setting
the data item and the next pointer. The next pointer
should be set to null because this new node will become
the last element in the queue.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

Rear

data: 77

next:

temp

Queue (Linked)

3. Set the current last element to point to the new node.

(slightly different if queue is empty)

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

Rear

data: 77

next:

temp

Queue (Linked)

4. Set the rear to the new element.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

Rear

data: 77

next:

temp

Queue (Linked)

When the enqueue method ends the temp pointer
will disappear.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

Rear

data: 77

next:

temp

Queue (Linked)

This picture is LOGICALLY EQUIVALENT to the
previous slide!!!

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

data: 77

next:

Rear

enqueue(int item) throws Exception

 if (queue is full)

 throw exception "Full Stack"

 else

 Declare Node temp

 Set temp to new node instance

 Set temp.data to item

 Set temp.next to null

 if (rear equals null)

 Set front to temp

 else

 Set rear.next to temp

 Set rear to temp

1. Allocate a new

node

2. Set values on the

new node

3. If rear is null it is

adding to an empty

queue so front must also

be set to the new node

4. Make the new

element the rear

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Linked) - Dequeue

Dequeue Pseudocode

1. Get a temp pointer to the front node.

2. Set the data on the item that will be sent back.

3. Set the front pointer to the second node in the
queue.

4. If the queue is now empty set the rear pointer
to nullptr.

5. Release memory for the original first node in
the queue.

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Linked)

1. Get a temp pointer to the front node.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

data: 77

next:

Reartemp

item

Queue (Linked)

2. Set the data on the item that will be sent back.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

data: 77

next:

Reartemp

11item

Queue (Linked)

3. Set the front pointer to the second node in the
queue.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

data: 77

next:

Reartemp

11item

Queue (Linked)

4. If the queue is now empty set the rear pointer to nullptr.

THE QUEUE IS NOT EMPTY SO NOTHING CHANGES ON THIS
STEP.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

data: 77

next:

Reartemp

11item

Queue (Linked)

5. Release memory for the original first node in
the queue.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

data: 77

next:

Reartemp

11item

Queue (Linked)

The temp pointer will disappear when the Dequeue
method ends.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

data: 11

next:

Front

data: 14

next:

data: 32

next:

data: 77

next:

Reartemp

11item

Queue (Linked)

This picture is LOGICALLY EQUIVALENT to the
previous slide!!!

© 2022 Arthur Hoskey. All
rights reserved.

QueueFront

data: 14

next:

data: 32

next:

data: 77

next:

Rear

11item

dequeue() returns int throws Exception

 Declare int item

 if (queue is empty)

 throw exception "Empty Stack"

 else

 Declare Node temp

 Set temp to front

 Set item to front.data

 Set front to front.next

 if (front equals null)

 Set rear to null

 Set temp to null

 return item

1. Get a temp pointer to front

2. Get the data to return

4. If front is null the the queue

is now empty to set rear to null

3. Move front to the second element

© 2022 Arthur Hoskey. All
rights reserved.

5. Release memory for the old front node

(will become a candidate for garbage

collection)

Queue (Linked)

makeEmpty()

 Set front to null

 Set rear to null

© 2022 Arthur Hoskey. All
rights reserved.

Deletes ALL of the

elements in the

queue.

Make front and rear null.

All nodes in the queue are now

unreferenced so they will become

candidates for garbage collection

Queue (Linked)

isFull() returns boolean

 Declare Node location

 try

 Set location to new Node instance

 Set location to null

 return false

 catch OutOfMemoryError exception

 return true

© 2022 Arthur Hoskey. All
rights reserved.

Check to see if you

can allocate

memory.

If you can then

queue is not full so

return false.

If you cannot

allocate memory,

then queue is full.

Same as Linked version

of Unsorted List

Circular Queue

 Last element points to first element.

 Only stores one pointer – rear

 For example…

© 2022 Arthur Hoskey. All
rights reserved.

Circular Queue

A circular linked queue uses only one external

pointer: rear

How do you access front?

© 2022 Arthur Hoskey. All
rights reserved.

Circular Queue

A circular linked queue uses only one external

pointer: rear

How do you access front?

Answer: Front is the next element after rear.

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Queue

 What are the Big-O runtimes for the
array-based and linked implementations
of a queue?

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison –
Queue(Linked)

Operation Cost

makeEmpty O(1)

isFull O(1)

isEmpty O(1)

enqueue O(1)

dequeue O(1)

Constructor O(1)

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

	Slide 1: Data Structures
	Slide 2: Today’s Lecture
	Slide 3: Goals
	Slide 4: Queue (Linked) - Implementation
	Slide 5: Queue
	Slide 6: Node
	Slide 7: Queue (Linked)
	Slide 8: Queue (Linked)
	Slide 9: Queue (Linked)
	Slide 10: Queue (Linked) - Enqueue
	Slide 11: Queue (Linked)
	Slide 12: Queue (Linked)
	Slide 13: Queue (Linked)
	Slide 14: Queue (Linked)
	Slide 15: Queue (Linked)
	Slide 16: Queue (Linked)
	Slide 17
	Slide 18: Queue (Linked) - Dequeue
	Slide 19: Queue (Linked)
	Slide 20: Queue (Linked)
	Slide 21: Queue (Linked)
	Slide 22: Queue (Linked)
	Slide 23: Queue (Linked)
	Slide 24: Queue (Linked)
	Slide 25: Queue (Linked)
	Slide 26
	Slide 27: Queue (Linked)
	Slide 28: Queue (Linked)
	Slide 29: Circular Queue
	Slide 30: Circular Queue
	Slide 31: Circular Queue
	Slide 32: Big-O Comparison – Queue
	Slide 33: Big-O Comparison – Queue(Linked)
	Slide 34: End of Slides

